NIST TC4TL Challenge

PathCheck Foundation

Sheshank Shankar, Ayush Chopra, Rishank Kanaparti, Myungsun Kang, Abhishek Singh, Ramesh Raskar

MIT and PathCheck
PathCheck Foundation, MIT spin-off

- Helping States and Nations launch GAEN apps
- Contracts with 5 US states/territories, 2 Countries
- World’s largest open-source non-profit project for Covid19
 Privacy first solutions for the pandemic and restarting economy
- 20 full time software engineers, 50 FT professional volunteers
 Epidemiologists, Privacy, Legal, Ethicists, Behavior scientists
- Long term philanthropic funding
Introduction

- **Challenge:** RSSI Signal Strength of BLE is very noisy.
- **Problem:** Estimate distance between 2 phones given the time series of phone sensor data.
 - Proximity sensing is concerned with predicting if two individuals have been in ”close contact” for ”too long” that may open the possibility of COVID-19 transmission.

Methods
- Deep learning based
 - LSTM
 - GRU
 - ConvGRU
 - Conv1D
 - Feed Forward
- Support Vector Machine
- Decision Tree
 - XGboost
 - Random Forest
- Nearest neighbour

Results
- Conv1D best results

Analysis
- Ablation Studies
- Data Analysis
- Training and Dev set Discrepancy
Method
Data Processing: Tested Approaches

❖ Mix-up Data Augmentation
 ➢ Increase effective size of training dataset size
 ➢ No increase in performance

❖ Nearest k train
 ➢ Subsample training dataset to align distribution with val set [stress test]
 ➢ Limited increase in performance
Data Processing: Current Approach

❖ Breakdown into 150 time-steps / 4 second interval
 ➢ Minimize need for undersampling and oversampling data points (to mitigate noise)
 ➢ Every time-step represented as normalized fixed-length feature vector

❖ Metadata is One-Hot Encoded and concatenated for each time-step vector
 ➢ All readings concatenated into single feature vector / 4 second interval*

*When model does not use time-series input
Model Architecture: Deep Learning

- **LSTM**
 - Time-Series input format
 - Implementation experiments
 - Multiple Layers
 - Varying Hidden Sizes

- **Temporal Conv1D**
 - Inspiration from Google’s Wavenet
 - Wavenet made use of Conv1D neural net for predicting the sequential audio signal.
 - 1D CNN + Dropout
 - 1D CNN + Dropout + Maxpool
 - 1D CNN + Dropout + Dilation
 - Experimented with hyperparameters

- **ConvGRU**
 - GRU with Conv1D reset, update and output gates
 - Implementation experiments:
 - No. of epochs
 - Batch size
 - Weight Decay
 - Learning Rates

- **Feed Forward**
 - Concatenated time-step input format
 - Implementation experiments
 - Multiple Layers
 - Dropout
 - Activation Functions
Model Architecture: Support Vector Machines and Decision Tree

❖ Support Vector Machine
 ➢ Concatenated time-step input format
 ➢ Implementation
 ■ Nu-Support Vector Classification
 ■ C-Support Vector Classification

❖ Decision Tree
 ➢ Concatenated time-step input format
 ➢ Implementation
 ■ XGBoost
 ■ Random Forest Classification
Results
Results

❖ **Hardware:**
 ➢ Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz server (528 GB RAM, 48 cores) on a single GPU

❖ **Best Networks:**
 ➢ ConvGRU (NIST)
 ➢ Temporal Conv1D (MITRE)

❖ **Implementation:**
 ➢ Pytorch
 ■ Completely trained
 ➢ Scikit-learn
 ■ Partially trained

*** All models optimized using Adam optimizer

<table>
<thead>
<tr>
<th>Network Description</th>
<th>Train Set</th>
<th>Train %</th>
<th>Epochs</th>
<th>Batch Size</th>
<th>1.2m FIN</th>
<th>1.8m FIN</th>
<th>3m FIN</th>
<th>1.8m COARSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRU</td>
<td>NIST dev</td>
<td>90.0</td>
<td>200</td>
<td>100</td>
<td>0.65</td>
<td>0.13</td>
<td>0.28</td>
<td>0.08</td>
</tr>
<tr>
<td>ConvGRU</td>
<td>NIST dev</td>
<td>100.0</td>
<td>200</td>
<td>100</td>
<td>0.37</td>
<td>0.04</td>
<td>0.23</td>
<td>0.02</td>
</tr>
<tr>
<td>ConvGRU</td>
<td>MITRE</td>
<td>100.0</td>
<td>500</td>
<td>4000</td>
<td>1.07</td>
<td>1.0</td>
<td>0.98</td>
<td>1.05</td>
</tr>
<tr>
<td>LSTM</td>
<td>MITRE</td>
<td>100.0</td>
<td>40</td>
<td>100</td>
<td>1.0</td>
<td>1.08</td>
<td>0.93</td>
<td>0.97</td>
</tr>
<tr>
<td>GRU</td>
<td>MITRE</td>
<td>100.0</td>
<td>40</td>
<td>100</td>
<td>1.02</td>
<td>0.99</td>
<td>0.93</td>
<td>0.97</td>
</tr>
<tr>
<td>Feed Forward</td>
<td>MITRE</td>
<td>100</td>
<td>100</td>
<td>500</td>
<td>0.71</td>
<td>0.79</td>
<td>0.85</td>
<td>0.75</td>
</tr>
<tr>
<td>Temporal Conv1D</td>
<td>MITRE</td>
<td>100.0</td>
<td>100</td>
<td>50</td>
<td>0.62</td>
<td>0.61</td>
<td>0.59</td>
<td>0.53</td>
</tr>
<tr>
<td>C-SVC</td>
<td>MITRE</td>
<td>1.0</td>
<td>-</td>
<td>100</td>
<td>1.01</td>
<td>0.97</td>
<td>0.97</td>
<td>1.01</td>
</tr>
<tr>
<td>Nu-SVC</td>
<td>MITRE</td>
<td>1.0</td>
<td>-</td>
<td>100</td>
<td>0.82</td>
<td>0.8</td>
<td>0.78</td>
<td>0.69</td>
</tr>
<tr>
<td>XGBoost</td>
<td>MITRE</td>
<td>2.0</td>
<td>-</td>
<td>100</td>
<td>1.0</td>
<td>1.04</td>
<td>1.03</td>
<td>1.04</td>
</tr>
<tr>
<td>Random Forest</td>
<td>MITRE</td>
<td>100.0</td>
<td>-</td>
<td>100</td>
<td>1.0</td>
<td>1.05</td>
<td>1.02</td>
<td>1.1</td>
</tr>
</tbody>
</table>
Analysis
Ablation studies

- Trained with a medley of input data streams, feeding a subset of the data to estimate the sensors which would give us the best results for the TC4TL task, using our training scheme.
- We excluded a few sensors, and trained it on rest of the data, thus requiring minimal adjustment on first layer of our neural-net, and accommodated varying sized input feature vectors.
- Performed initial experiments by excluding device-level information (~35%) - TXDevice, RXDevice, TXPower, RxPower, Device Carriage, and Activity, but didn't observe any major improvements, but rather made it unstable, and susceptible to overfitting on two classes.
- Other studies done like -
 - Only bluetooth
 - Only Bluetooth and Gyroscope
 - Only attitude excluded.
- Shall take others like gyroscope (for orientation of Bluetooth antenna), accelerometer (for linear motion), and magnetometer (for magnetic aberration).
Data Analysis

- We investigate variation across different sensor data.
- We visualized PCA in 2d to identify if there are any visible cluster or patterns in data.

Fig. 2. PCA Visualization of MITRE dataset
Fig. 3. PCA Visualization of NIST Development dataset
Training and Dev set Discrepancy

- We perform nearest neighbour to analyze the closest points in the training and testing set.

- We compare the class-wise distance for the training and dev nearest neighbours.
 - Average l2-norm between closest points: ~12
 - Average l2-norm between closest points with same class: ~200

- We train on a subset of training dataset with 2-nearest neighbour and 1-nearest neighbour with respect to the dev set.
Conclusion
PathCheck Foundation: Conclusion

- Challenges due to the noise in the data distribution and poor transferability of training data over the validation data.
 - We used only training data and not dev data.
 - The test/dev is too same while training set didn’t provide good transferability at all.
 - MITRE set result is close to chance and unclear if any algorithms will be useful in practice

- A physics based model which could capture appropriate invariances will be a good step towards solving the task.

- We also consider interpretable modeling and extensive breakdown of different sensor based data as part of the future work.

Website: pathcheck.org
Email: info@pathcheck.org
PathCheck Foundation, MIT spin-off

• Helping States and Nations launch GAEN apps
 Contracts with 5 US states/territories, 2 Countries

• World’s largest open-source non-profit project for Covid19
 Privacy first solutions for the pandemic and restarting economy

• 20 full time software engineers, 50 FT professional volunteers
 Epidemiologists, Privacy, Legal, Ethicists, Behavior scientists

• Long term philanthropic funding